## April 2003 AH

1. (a) Differentiate $y=4^{x+1}$
(b) $y=\tan \left(x^{2}+x+2\right)$
3,3
2. Use the substitution $u=2 x^{2}$ to find $\int \frac{x}{1+4 x^{2}} d x$ 4
3. Find the term in $x^{3}$ in the expansion of $\left(3 x+\frac{2}{x}\right)^{5}$.
4. Express in partial fractions $\frac{2 x+1}{(x+1)^{2}}$
5. Find $\frac{d y}{d x}$ when $x^{2}+x y+y^{2}=3$.

Hence show that there are only 2 values of $x$ where $\frac{d y}{d x}=0$
6. Given $z=x+i y$, find the equation of the locus of $|z-i|=|z+i| \quad 4$

$$
x-y+z=1
$$

7. For the system of equations $x+y+2 z=0$,

$$
2 x-y+a z=2
$$

use Gaussian elimination to express the value of $z$ in terms of $a$. stating the value of $a$ for which there is no solution.

Hence write down the values of $x, y$ and $z$ when $a=3$.
8. Prove by induction that $\sum_{r=1}^{n} 2 r^{2}=\frac{1}{3} n(n+1)(2 n+1)$

## April 2003

-2-
9. Given $A^{2}=5 A-3 I$, where $I$ is the Identity matrix,
find an expression for $A^{-1}$ in terms of the matrices $A$ and $I$.
Find a similar expression for $A^{3}$.
10. (a) Find the Maclaurin series up to $x^{3}$ for $e^{x}$ and $\sin x$ and write down the series for $e^{-x}$.
(b) Using the results of part (a) find the Maclaurin series up to terms in $x^{3}$ for $\frac{\sin x}{e^{x}}$
11. (a) Find the point of intersection of the line
$\mathrm{L}: x=-t+1, y=-t, \quad z=t-3$ and the plane $\mathrm{P}: x-y+2 z=9$
(b) Find the angle between the line L and the plane P .
12. (a) Find values of $x$ and $y$ such that $29 x+17 y=1$
(b) Prove that $n^{2}-n$ is never odd, where n is an integer.

## 13./over

## -3-

13. A function $f$ is defined by $f(x)=\frac{x^{2}+x-2}{x+3}, x \neq-3$
(a) Find the coordinates of the intercepts with the $x$ and $y$ axes.
(b) Write down the equation of the vertical asymptote.
(c) Show that $f$ has a non vertical asymptote and write down its equation.
(d) Find the coordinates of the stationary points and justify their nature.
(e) Sketch the graph of $f$ showing all the main features.
(f) On the same diagram sketch the graph of $y=|f(x)| \quad \mathbf{2 , 1 , 3 , 4 , 1 , 1}$
14. (a) Write down expressions in terms of $n$ for

$$
\sum_{k=1}^{n} 1, \quad \sum_{k=1}^{n} k, \quad \sum_{k=1}^{n} k^{2}
$$

Hence find an expression in its simplest form for $\sum_{k=1}^{n}\left(3 k^{2}-k-1\right)$
(b) Using a result from (a) find the value of $\sum_{k=11}^{20}\left(3 k^{2}-k-1\right)$
15. The spread of a virus in a small village, population 400 is modelled by the differential equation $\frac{d V}{d t}=k(400-V)$,
when $t=0, V=80$, where $t$ is measured in weeks and $V$ is the number of people with the virus at time $t$.
(a) Show that $\frac{1}{400-V}=A e^{k t}$, stating the exact value of $A$

Hence express $V$ explicitly in terms of $t$.
(b) Given after 7 weeks the number of people with the virus has doubled, find the value of $k$, correct to 2 significant figures.
(c ) The spread of the virus is described as an epidemic if more than $\frac{2}{3}$ of the population are affected after 20 weeks, was this an epidemic? (justify your answer)
16. Find the general solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=e^{-3 x}
$$

hence find the particular solution when both

$$
y=0 \text { and } \frac{d y}{d x}=0 \text { when } x=0 .
$$

## End of paper

